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Abstract. We develop graphical techniques in the case that the labels on legs (or edges) span 
a representation of a compact group. This generalizes previous work, in which the labels 
had to be irreducible representation labels, to cover many matrices or reducible tensors 
arising in theoretical physics. Diagrams corresponding to tensors are defined so that basis 
transformations, such as group operations or parity interchange, may be performed by 
standard graphical operations. Bipartite diagrams play a central role in the theory. The 
Jucys diagrammatic reduction theorems may be generalized so as to cover reducible tensors. 
As one example, we discuss group-subgroup bases, developing graphical representations 
for the Racah factorization lemma and isoscalar factors. As another example, we give a 
graphical approach to group-theoretic restrictions on the elements of crystal tensors, and 
discuss some illustrative problems. 

1. introduction 

Lagrange boasted that his Mkcanique Analytique did not contain a single diagram 
(Ziman 1960, preface). The opposite extreme is equally possible: one may develop 
physical theory using graphical operations to the exclusion of algebraic equations. The 
ubiquitous Feynman diagram and graphical techniques in angular momentum theory 
are adequate illustrations. They have obvious value in conciseness, structural clarity 
and as a mnemonic and book-keeping aid; this is enhanced by depolymerization 
theorems which permit the replacement of a diagram by a simpler structure. For 
Feynman diagrams, factorization (or indeed any associative combination rule) of 
separate diagrams or of their component parts leads to such important results as the 
linked cluster theorem, the Dyson equation, the Bethe-Salpeter equation (Mattuck 
1967). In group theory a set of graphical reduction theorems exist which cover the 
theorems conventionally known as the great orthogonality theorem, Schur’s lemma, 
Wigner-Eckart theorem, etc (Stedman 1975, to be referred to as I)?. These reduction 
theorems have been used extensively in discussing complicated problems in Jahn- 
Teller systems (Stedman 1976). 

We develop a generalization of this group-theoretic example. Consider diagrams in 
which the set of labels L on any leg represents an invariant space under the operations 

t These reduction theorems were enunciated for the case of the rotation group in three dimensions by Jucys 
and collaborators. They were first published in English under the names of Yutsis, Levinson and Vanagas 
(1962) and have been referred to subsequently as YLVn by several authors. We shall now refer to the 
generalized reduction theorems as JLVn in conformity with the original (Lithuanian) spelling of Jucys. 

1999 
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of a compact group G. (That is, L spans a representation of G. This is a much less 
stringent requirement than that of having irreducible labels, as in I.) We define a 
standard choice for subdiagrams ( 0  3) which permits the Jucys reduction theorems to be 
generalized to all bipartite networks ( 0  6). This allows the standardization of basis 
transformations, a deeper understanding and unification of many known results, and a 
general approach to group-theoretic restrictions on elements of physical tensors, such 
as crystal properties. 

A glossary of definitions is provided in appendix 1. 

2. General principles of the technique 

The interpretation of a diagram is not affected by deformations within the plane that do 
not change the topology of interconnections or the rotational sequence of connections 
at a subdiagram. 

Legs in a diagram correspond to algebraic labels? (e.g. matrix or tensor suffices, 
quantum numbers, irreducible group-theoretic labels, spatial coordinates). Different 
labels require different legs. 

Joining legs corresponds to equating labels; labels omitted on internal legs are 
automatically summed over the relevant complete set. In general it is necessary to 
ensure the paired suffices have dual properties (e.g. annihilation and creation operators, 
covariant and contravariant labels) which we shall distinguish by the terms positive and 
negative parity (§ 3.1). 

Two or more different labels may be joined, or one may be terminated, at 
subdiagrams which represent the tensors or matrices of the theory. The order of labels 
in the algebraic expression is reproduced in the diagram by working anticlockwise from 
a conventional point. 

It is possible to cast many sections of undergraduate-level theoretical physics 
completely in diagram notation in accordance with the above principles, particularly 
where tensors or matrices are used. As an example of the manipulation of unitary 
matrices, see § 2 of I. A simple use of such techniques in exhibiting recursion relations 
has recently been given by Stone (1976). For an example in tensor calculus, see Penrose 
(197 l), who lists the properties of the Levi-Civita tensor in diagram form. There is 
a striking resemblance between his diagrams and the Jucys reduction theorems, also 
Clebsch-Gordan orthogonality relations etc. In view of 0 6 of this paper the 
resemblance is certainly not accidental (see appendix 2). 

3. Network theorems for invariant, self-conjugate subdiagrams 

3.1. Introduction 

The applicability of the Jucys reduction theorems to a given network is conditional upon 
an invariance property for all the nodes in the network. Two diagram forms of this 
t Alternative mappings are of course possible. By dualizing in the plane, labels could correspond to nodes, as 
in the projective geometric approach to 6-j  symbols (Fano and Racah 1959, Robinson 1970), and one can 
have more abstract mappings based on simplex theory (Smorodinskii and Shelepin 1972) etc. In these 
three approaches a 3-j  symbol is represented respectively by three lines at a point, three points on a line, and a 
triangle. We think the first to be more natural and useful to the physicist, as confirmed by the success of 
Feynman and group coupling diagrams. 
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invariance property are given in equation (4), and after the latter an algebraic 
transcription is given. In words, the quantity represented by each node should be 
unaffected by a simultaneous transformation (appropriate to any group operation) of all 
the labels on that node. In I, the Jucys reduction theorems were proved for the case of 
irrep labels on each leg. To extend this to reducible representation labels, we shall 
introduce the reduction transformation which block diagonalizes the representation 
into its irreducible components ( 5  5 ) .  Since this transformation is unique for all group 
operations, it corresponds to an invariant node in the sense of equation (4). It follows 
that a subdiagram carrying reducible labels may be represented as a network of 
invariant nodes, some giving the irreducible parts and others the reduction transforma- 
tions. At this point the applicability of the JLVn theorems becomes obvious (0 6). 

Since invariance may be defined in one of two senses (equations (4a,b)-in our 
jargon, nodes may have either even or odd parity) it is important to examine the 
connection between these two types of invariance. An invertible matrix may be defined 
for any set of labels so as to generate a parity transformation of those labels. It follows 
that a parity conjugate of a given node may be constructed by applying the appropriate 
parity transformation to each leg. Alternatively one may define the parity conjugate for 
a node representing an invertible matrix as the node representing the inverse matrix; it 
is straightforward to show that either definition produces a node with the opposite 
invariance property to the original node (e.g. theorem 1). We prove in § 3.3 that these 
two definitions of parity-conjugate nodes can be made to coincide for a certain class of 
nodes. We term these nodes self-conjugate. The theorems of § 3.3 give sufficient 
(though perhaps not necessary) conditions for a node to be self-conjugate. Roughly 
speaking (there may be exceptions) a unitary matrix element may be represented by a 
self-conjugate node. Our theorems cover the case of certain non-unitary matrices as 
well. Our prototype for an invariant, self-conjugate node is the 3-jm symbol, and that 
for a parity transformation, is the 2-jm symbol (cf I). 

The proof that a 3-jm node is self-conjugate has previously been known as the 
Derome-Sharp lemma (Butler 1975); theorems 4 and 5 were obtained by generalizing 
the proof of this lemma. The concepts of parity transformation matrices and of 
self-conjugate nodes generalize and unify the discussion of particular cases by other 
authors (0 5 ) .  For example, requiring the reduction transformation node (mentioned 
above) to be self-conjugate is equivalent, by theorem 5 ,  to an appropriate definition of 
the parity transformation of a repetition index (0 5 ) .  This generalizes the definitions 
given in the literature for special cases (e.g. a multiplicity index). 

Much of the ambiguity in graphical construction can be avoided by explicit recogni- 
tion of the parity of the component nodes, and insisting on a bipartite construction (in 
which each leg joins nodes of opposite parity). This restriction eliminates the sort of 
problem, familiar in the algebraic formalism, as to whether one should pre- or 
post-multiply a matrix by its transformation matrix, for example. From the viewpoint 
of § 6 ,  our generalization of the Derome-Sharp lemma simplifies the definition of the 
reduced matrix elements associated with the Jucys reduction theorems. 

The parity transformation may correspond to an asymmetric matrix; if so, its 
graphical representation must violate reflection symmetry. Both arrows and stubs have 
been used (cf I); we shall use stubs. 

3.2. Basic definitions and theorems 

Consider a diagram X which represents an invertible (i.e. square and non-singular) 
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matrix; it may be a network composed of similar diagrams 2, which we denote by 
X = {Z} .  We define the adjoint diagram x as that representing the transpose of the 
inverse matrix. Thus 

= - f f p  

i.e. Z,X,,X~,= &S. In the special case of unitary matrices, the asterisk therefore 
represents complex conjugation, as in I. 

We take this definition of adjoint diagrams to apply to diagrams of degree greater 
than two when it is possible to identify an invertible matrix by suitable combinations of 
labels. For example, a 3-jm node has four legs corresponding to three sets of 
irreducible representation labels {hili}, i = 1 , 2 , 3  ( I i  = component of irrep h i ) ;  and to a 
multiplicity index r. On grouping labels in the form (Y = ( A l l l ,  h212), p = (h313, r )  we 
have an invertible and indeed unitary matrix. If we assume that paired labels are 
arranged sequentially, starting from the conventional point of origin (cf P 2 ) ,  this 
definition of adjoint is unaffected by rotation of the diagram, as required in 3 2 .  For 
example, equation (1) for a 3-jm node has the expanded form 

'& . = '/. 
-. 

The adjoint operation is readily shown, from matrix manipulation, to obey 
( X ) * = X ,  and, for those linear networks in which paired labels join the same 
subdiagrams, X = { Z * } ,  i.e. the adjoint of such a network of subdiagrams is the 
network obtained on replacing each subdiagram by its adjoint. Note that to ensure this 
result, it is necessary to transpose the inverse matrix in defining the adjoint. 

Since the space of labels L is invariant under a compact group G, we may define a 
group operation node as a transformation of labels within L. We denote this by a triangle 
(cf equation ( 3 )  of I), and define its adjoint in accordance with equation (1): 

The asterisk does not now necessarily represent complex conjugation since, for 

We define a right invariant diagram X (invariant under G, to be explicit) by the 
general L, a group operation need not be unitary. 

equation (taking a diagram of degree 4 for example): 

I 
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for all g in G, and a left invariant diagram by the same expression, but with a clockwise 
sense of rotation: 

i.e. 

Xapya = ( O g ) a , a ( O g ) p , p ( O g ) y , y ( O g ) a , ~ a l p , y ' * , .  

A sign indicating the relevant parity has been added on the left sides. 

Theorem 1 .  If a diagram is right (left) invariant then its adjoint as defined by equation 
(2) is left (right) invariant. 

Proof. Suppose X has positive parity and degree 2. Then, using all above equations, 

-o*-=&+=+@+ * * 

* * 
=- = &. 

A similar proof may be written out for an X of higher degree. 

the following properties. It represents an invertible matrix rap, 
We suppose that a parity transformation node for the labels L may be defined with 

which is right invariant: 

+ = -  

i.e. T~~ = (Og)aaf(Og)ppmapt. To fix ideas, we may identify rap as the complex 
conjugate of the 2-jm symbol for irreducible representation labels L ( 0 4 )  or the 
contravariant metric tensor in relativity (cf appendix 2). As the first example shows, rap 
is not necessarily a symmetric tensor, hence the need for a symbol which is not invariant 
under reflection. 

We define a right conjugate diagram as one which obeys both the equations 

e.g. 
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((X'),,,.,,,, = X&r,v,s.) and a left conjugate diagram by the equations 

Collectively, such diagrams will be called self-conjugate. 
If a diagram is right (left) invariant and right (left) conjugate, it will be called a 

fundamental diagram of positive (negative) parity. Two simple examples are the parity 
transformation itself, and the operation 

where the group element is summed over at least a class C of G. Such diagrams, we 
suggest, should be our basic building blocks. 

Theorem 2. If X is a self-conjugate diagram, x* is also a self-conjugate diagram of 
opposite parity. 

The proof is trivial; theorems 1 and 2 together imply a similar statement for fundamen- 
tal diagrams. 

Theorem 3. If the closure of a network (by which we mean the diagram obtained on 
bringing any external legs of a network to a new, common node) is bipartite, and if the 
network is composed of invariant, self-conjugate or fundamental diagrams, the net- 
work is an invariant, self-conjugate or fundamental diagram respectively of appropriate 
parity. 

The proof is similar to those in theorems 1 and 2. Theorem 3 may be regarded as a 
generalization of the basic theorem in 04.1 of I, itself the foundation of the Jucys 
reduction theorems. Theorem 3 is amply illustrated in the diagrams of I, of Stedman 
(1976) and of this paper. An obvious special case of a bipartite diagram is when each 
subdiagram has negative parity and each leg has a parity transformation node. 

3.3. General theorems for self -conjugate nodes 

It is recommended that the details of this subsection be skipped at a first reading. We 
prove that a node representing an invertible matrix may be constructed to be self- 
conjugate, provided we are free to define the parity transformation on one leg L1 in an 
appropriate manner, and provided certain other, relatively unimportant, conditions 
hold. In theorem 4, the other condition is that L1 represent all the row or column labels 
for the matrix. In theorem 5, the other condition is that L1 and say L2 together cover the 
row or column labels, and that L2 be irrep labels. Other generalizations may be possible 
but the above will be quite adequate for our purposes. 

Theorem 4. If a diagram X of degree n where n 3 2 represents an invertible matrixXolS 
on defining labels by Q = L1, = {L2, . . . , LJ (Li represents the labels in the ith leg), 
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and if invertible group and parity operations are defined for LZ7 . . . , L,, then group and 
parity operations on L,  which obey equations (3) and (6) within bipartite networks may 
be constructed so that X is a fundamental diagram of either parity. 

Proof. Choose X to be of degree 3 and of positive parity for definiteness. We make the 
definitions: 

and their adjoints by the rule X* = {Z*} in the above constructions. (Were X chosen to 
be of negative parity, one would interchange X and X in equations (10) and (1  l).) One 
may then verify the statements in the theorem by straightforward manipulations. To 
save space, we exhibit similar manipulations only in theorem 5. 
It is necessary to check the compatibility of these constructions with previous assump- 
tions when applying these theorems otherwise, for example, identifying X as a group 
operator would lead to inconsistency. A simple triangle is not a fundamental node. 

Theorem 5. If a diagram X of degree n where n L 3 satisfies the conditions: 
X represents an invertible matrix XaP in the labels a = (L l ,  L2), p = (L3,  . . . L,) ;  
L1 = { r }  where r is unaffected by group operation; 
L2 = { A l }  where these are irreducible labels for G ;  
invertible group and parity operations are defined for L2, . . . , L, ; 
X is right (left) invariant; 

then a parity transformation on L2 labels may be constructed so that X is a fundamental 
diagram of positive (negative) parity. 

Proof. Let n = 3 and X be right invariant for definiteness. Then 

On using equation (7a)  for X and equation (3) we have 

* * 
A = -  . .' 

We project out the internal group-theoretic node by introduting another group 
operation and summing over G, using equation ( 5 )  of I ( i  = (1 )2 = (A)-' = the dimension 
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of irrep A ) :  

A 

so that, at least for bipartite connections to X, we may make the identification 

Hence also 

so that under the same restriction we may make the identification 

since from the above equations this guarantees that X is right conjugate (equation 
(7a) ) .  Finally we verify that the adjoint of this parity transformation obeys the rule 
x = {Z*} 

so that equation (7b)  holds for X. 

4. Kets, operators and basis transformations in quantum mechanics 

We represent a ket)xL) where x represents the parentage labels and L is a set of 
quantum numbers, by 
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This has some points in common with the El-Baz and Caste1 (1972) representation of 
spherical harmonics. The wavy ('spatial') leg symbolizes rays in the Hilbert subspace 
associated with x .  We may define a bra as the adjoint diagram since orthogonality and 
completeness then reduce to equation (1). We now construct the group action and the 
parity transformation on the Hilbert space using theorem 4. If we follow the parity 
convention of equation (2.4) of Butler (1975) a ket (bra) is a fundamental node of 
negative (positive) parity. The constructions then become 

* 
7 v =  

A =  
and equation (2.4) of Butler (1975) for a rotated ket becomes 

= +I-&-. (17) 

Operators in the Hilbert space may be constructed via bra, ket and matrix elements. 
The last named are denoted (cf I): 

M 

so that 

f* 

X 

I *  
f* 

X 

A generalized tensor operator then corresponds to choosing QM to be a left invariant 
node (usually of degree three). 

As an example, we consider the unit tensor operators of 0 17 of Butler (1975). 
Following the above definitions we write these as 

1 

R I  
Note that in equation (20) while the internal construction is bipartite, the diagram does 
not yield bipartite graphs on closure because of the different parities of externally linked 
diagrams. In fact, these operators are not unitary. 

Now consider a basis transformation of our kets, in which L + L'. The square matrix 
of inner products may be represented graphically as a basis transformation node: 
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so that (cf equation (11.3) of Butler 1975): 

We have added a stub or parity transformation to ensure a bipartite construction. The 
transformation is of course invertible; from theorem 4 the basis transformation node is 
fundamental with negative parity. When L = L' the basis transformation reduces to the 
adjoint of the parity transformation: 

+ = +. (23)  

Similarly, one may think of our representation of a ket (equation (15)) as a basis 
transformation from Hilbert space to quantum state labels. 

We will be analysing physical problems in which the labels of such basis transforma- 
tions are compounded of other labels, e.g. of irrep labels and repetition indices which 
specify the duplications or omissions of irreps of G necessary to give a complete 
mapping of the two label spaces. For example a Clebsch-Gordan coefficient may be 
regarded as a basis transformation. One label space is that of uncoupled states 
(Y ={Alll ,  A212} and the other is that of a coupled state A313 together with a product 
multiplicity index r signifying the different occurrences of A 3  in the Kronecker product 
Al@Az. This multiplicity label was given graphicai representation in I, and is our 
prototype of a repetition label. It is invariant under group operations. We adopt the 
convention that wherever it is necessary to exhibit repetition labels, they will be 
associated with an extra, broken line, standing in an anticlockwise position to the legs 
representing the repeated labels. Theorem 5 ( 0  3.3) is relevant, for example, to the 
situation in which the repeated labels are irrep labels and the diagrams in that theorem 
are in conformity with the above conventions. 

5. Group-theoretic applications 

As mentioned in § 4 ,  a 3-jm node (or Wigner or Clebsch-Gordan coefficient) is 
essentially a basis transformation from coupled to uncoupled kets. The transformation 
is unitary, and the adjoint is the complex conjugate expression. The 3-jm node of I is 
left invariant (this corrects an error in equation (12) of I). The 2-jm symbol is the parity 
transformation for group-theoretic labels; in R3, it is the parity transformation for 
group-theoretic labels; in R3, it has matrix elements T,,,,,,, = (-l)'-"' S-,,,, for example. 
Again it is a unitary matrix with a trivial adjoint. Butler's (1975) definition of the 2-jm 
symbol in fact gives a left invariant node, so that its complex conjugate should be 
identified with our parity transformation stub. In I, the 2-jm symbol was taken to be 
real orthogonal, and thus self-adjoint. It is helpful not to assume reality of the 2-jm 
symbol and to exhibit the bipartite structure of the theory wherever possible. The 2-jm 
symbol can often be chosen to have a very simple value (Butler and Wybourne 1976). 

The lemma of Derome and Sharp (1965) states that it is possible to find a unitary 
(parity) transformation of the multiplicity label in the 3-jm symbol such that, in our 
jargon, the 3-jm node is left conjugate and thus fundamental (cf equation (17)  of I and 
equation ( 7 )  of this paper). The algebraic proofs of the Derome-Sharp lemma are 
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isomorphic to the diagram proof rendered by theorem 5 where an orthogonality 
relationship for 3-jm coefficients (equation (11) of I): 

is used for equation (12) of this paper. The construction of equation (14) then gives an 
explicit representation of the unitary transformation A,s(A lA2A3) of product multiplic- 
ity required by the lemma: 

..... ....... 
1 ~ 2 ~  3) !...... = r ....... g"8 s '  

r * s  
A 3  

The diagram notation exhibits the structure of the theory and the significance of the 
lemma in an especially helpful manner, and suggests the generalizations we now 
present. 

compact group G, as in 0 1. The group operation 0, has a representation in the basis L 
given by a square matrix Mcc,(g).  From elementary group theory, there exists an 
invertible matrix transformation Bc,,Al which will reduce the representation into block 
diagonal form, for all g in G, so that each block will be a unitary matrix appropriate to 
some irrep A. If A occurs RA( = 0, 1, . . . .  ) times in this reduction, we may obtain R A  

from character theory since x ( M )  = ZARAxA. We define a repetition index r running 
from 1 to RA for each A. Following the convention for the diagram representation of 
repetition indices given in 0 4, we depict the matrix Bc,,Al as a node in the form 

We now take any set of labels L = {c ,  c', . . . .  }which form an invariant space under a 

Bc.rAl * c-hl. (26) 
I 

I 
r 

Since this node represents an invertible invariant matrix and since r is invariant, 
theorem 5 may be applied. In conformity with the standard conventions for the parity 
of a ket and a 3-jm symbol we choose the node to have negative parity. It follows that 
the node is fundamental given the construction 

A 

for the parity transformation on the repetition index r. The Derome-Sharp lemma is a 
special case of this result, with L = {Al l l ,  A212}.  

Another special case, which has not previously been discussed from this viewpoint, 
is that of groupsubgroup reduction (eutler 197%). Let L now represent theirreducible 
labels K k  of the irreps of a group G, where G 2 G .  We use the symbol a for the 
repetition index in this case, also known as a branching multiplicity index or parentage 
label. We use a double line for the irrep labels of e. Hence the group reduction 
transformation becomes denoted by 



2010 G E Stedman 

The properties of the corresponding parity transformation (resulting from an 
application of theorem 5 )  on the branching multiplicity index (cf equation (27)) have 
been discussed by Butler and Wybourne (1976), using the notation ( A ) a N , a r N ' .  Their 
derivation is quite different to ours. Analogues of their arguments are obtained by 
using the Jucys reduction theorems for G to G-invariant diagrams. For example: 

a3 

The small figures on the multiplicity lines indicate 3-jm permutation matrices (table 1 of 
I) and equal a sum over two 3-jm coefficients as indicated by the figure. The equations 
(29)-(31) are counterparts of equations (13.2), (13.10) and the inverse of (12.9) of 
Butler (1975), respectively. Equation (29) is a general diagram form of the Racah 
factorization lemma. This representation of an isoscalar factor generalizes and renders 
unambiguous that of El-Baz and Caste1 (1972) for SU(2). These examples should 
suffice to illustrate how all the standard results (unitarity of isoscalar factors, g r o u p  
subgroup reduction of 6-j symbols etc) may be written and used in diagram form. One 
may write the isoscalar factor as a fundamental node by suppressing the 3-jm nodes in 
its construction (8 6), in which case the unitarity condition is of the form of equation (1). 
Note that if the parity transformation is not necessarily real we should add an asterisk to 
one stub in the reduction theorems YLV2, YLV4 in I and in Stedman (1976); which 
stub we conjugate is defined by the requirement of a bipartite construction (see 3 6.5). 

6. Generalized diagram reduction theorems with application to lattice dynamics 

6.1. General 

If a diagram X of degree n is invariant under some compact group, analogues of the 
Jucys reduction theorems JLVn exist even when external legs do not have irrep labels. 
It is merely necessary to introduce invariant basis transformations to irrep labels 
preserving a bipartite structure, then apply the standard JLVn theorem. Examples are 
given in the following theorem, which epitomises our conclusions. 

Theorem 6. An invariant diagram X is uniquely defined by the coupling constants of the 
invariance group and by the choice of certain matrices ('reduced matrix elements') 
which act only on the repetition labels associated with the decomposition to irrep labels. 
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This choice may include an overall factor; for unitary basis transformations this 
factor can be only a phase. We prove the theorem for several representative cases. 

Case 1. A diagram of degree two with irrep labels. The standard JLV2 theorem 
applies, giving a result equivalent to Schur’s lemma. The transformation node is a 
parity transformation, or its adjoint (depending on its parity), with a multiplicative 
factor : 

Case 2. A basis transformation with one irrep-labelled leg, as in equation (26). Let 
X, Y be two such diagrams of the same parity (say negative). Then 

* 

A 

i.e. X = Y apart from a matrix operation on the repetition index. 

Case 3. A basis transformation linking two sets of labels L1, L2 of equal dimension, but 
neither of which are irrep labels. We introduce basis transformations taking both L1 
and L2 to group-theoretic labels: 

The basis transformations linked to external legs are unique to within a repetition index 
transformation by the result of case 2. The remaining part of the above network is 
unique to within a factor by the result of case 1.  Hence the whole network has the stated 
property. 

Case 4.  A diagram of degree three with reducible labels. For clarity we omit repetition 
labels in the basis transformations required: 

Q. 
(35) 
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Since the basis transformations in equation (35) are unique to within a phase by the 
previous theorem, X is arbitrary only to the extent of choosing the 'reduced matrix 
elements' (we now exhibit repetition labels): 

Hence it is scarcely necessary to label basis transformation diagrams; they are 
essentially determined by the nature of their legs. We called such diagrams nodes (cf 
appendix 1). 

The physical significance of this theorem may be clarified by a few examples. 

angles for spatial labels: 
A spherical harmonic is a realization of a ket for G = R3 and with spherical polar 

From the general point of view suggested in 04, we may regard this as a basis 
transformation from spherical polar angles to R3 (irrep) labels. With suitable normali- 
zation, Y f ,  is unitary. By theorem 6, it is unique to within a phase (there are no 
repetition labels), the ambiguity of which is well known. 

Second, a lattice mode eigegvector for zero wavevector modes is essentially a basis 
transformation from the factor group (of the space group) labels to lattice site labels. 
That it is unique, up to a choice of phase and labelling convention, simply means that 
given a lattice one may immediately compute the appropriate eigenvectors within the 
same range of ambiguity; the problem is sufficiently defined. 

Case 4 of the above theorem provides some rather less obvious conclusions. We 
shall illustrate these in two different fields. 

6.2. Tensor harmonics 

A tensor harmonic for R3 (Jackson 1962, Campbell 1971) may be defined as a 
fundamental node XI, (e, 4) with more than two legs; one leg carries R3 labels, one 
carries angular labels, and the remaining legs, Cartesian labels: 

For a vector harmonic, with one Cartesian leg, it follows from theorem 6 that X,,,,(O, 4) 
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is essentially unique. The construction 

has the appropriate properties (when appropriately normalized) and by uniqueness may 
be taken to be the vector harmonic. This corresponds to the conventional definition: 

The generalization of tensor harmonics to an arbitrary group is now obvious; we form a 
bipartite construction of fundamental nodes with the desired character of external legs: 

r s  

Different choices of h l ,  h 2 .  . . , r, s, . . . give different harmonics in general. 
We mention that a fundamental node with either invariant or spatial (say Cartesian) 

leg labels is a member of the integrity basis of the group. We may derive such by 
realising the kets via Cartesian functions and coupling in a bipartite manner. 

6.3. Crystal tensors 

Theorem 6 illustrates the importance of group coupling coefficients in determining the 
structure of physically important tensors, invariant under some symmetry group. While 
plausible, this result has not previously been written down in full generality, nor has it 
been exploited greatly in physical applications, some of which are potentially impor- 
tant. Consider for example a crystal tensor, i.e. a tensor whose components may be 
determined by macroscopic measurements and which is therefore invariant under the 
operations of the factor group G of the crystal space group (Lax 1974). A special case 
(X having two Cartesian and one irrep-labelled leg) is discussed de novo by Birman 
and Berenson (1974) and Birman (1974a); they mention the possibility of other 
applications. This and other related topics have been reviewed by Birman (1974b) in a 
very comprehensive article. Particular attention has been paid to morphic effects by 
Anastassakis and Burstein (1971). We now relate our work to theirs, and in particular 
discuss one consequence of theorem 6 :  if two crystal tensors have the same indices and if 
all repetition indices are trivial (i.e. zero or one) the components of the two tensors are 
proportional. 

As a simple example, consider the internal strain tensor Fols(j)  of Miller and Axe 
(1967). a, p, are Cartesian labels and j is a label for a zero wavevector lattice mode and 
thus is essentially an irrep label for the factor group of the crystal space group. Let 
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P $ ( j )  be the first-order Raman scattering tensor (e.g. Birman and Berenson 1974). 
Then the tensors F and Ptif satisfy the requirements of tneorem 6: 

On checking all character tables for the crystallographic point groups we find that in 
no case does [I',@I',] contain any irrep more than once, where r, is the vector rep. 
Hence repetition indices occurring in the reduction of F (or P")) are trivial. It follows 
that the components of these tensors are proportional. Miller and Axe (1967) noted 
only that they were zero together, which did not include the above generalization or 
indeed the necessary step of checking on the absence of repeated representations. 

If we ignore questions of symmetrization of the Cartesian suffices, these two tensors 
can be related to the tensor p(l'l) describing electric-field-induced infrared absorption 
(Birman 1974b); if the field is static, only long-wavelength modes will be excited, and 
again the crystallographic point group is the relevant symmetry group. The lack of 
repeated representations is illustrated in the example Birman (1974b) gives of this 
effect, when discussing electric-field-induced infrared absorption in diamond. 

By way of contrast, we take Birman's other example of a morphic effect: field- 
modulated Raman scattering in diamond. The components of the relevant tensor P(*,') 
multiply not only polarization vectors for the radiation but two powers of the electric 
field and the normal mode coordinate. On decomposing these with respect to the irreps 
of the space group for a typical case, a number of repetitions appear. Hence a 
corresponding number of reduced matrix elements are required to specify the appro- 
priate tensor completely. 

This is sometimes expressed by saying (Anastassakis and Burstein 1971, Lax 1974) 
that the number of repeated irreps in the relevant reduction gives the number of 
independent components of the tensor. This is rather misleading in general, since a 
given component may be a linear combination of the reduced matrix elements, which 
are the genuinely independent quantities. In simple cases, the reduced matrix elements 
contribute to disjoint sets of components, and the standard methods (Lax 1974) of 
direct inspection and of invariants are easily used. In more complex cases, particularly 
for the higher-order morphic effects of Anastassakis and Burstein (1971) in general 
crystal symmetries, our approach using the group coupling coefficients will be prefer- 
able, because of the mixing of reduced matrix elements and because of the systematic 
character of the method. This will be greatly facilitated by the soon-expected availabil- 
itfr of tables of coupling coefficients for all crystallographic point groups (cf Butler and 
Wybourne 1976), and, following Berenson and Birman (1975), for space groups also. 
Even where direct inspection methods may be retained for their simplicity, it seems 
helpful to recognize that it is essentially the Wigner-Eckart theorem (more generally, 
JLVn) which underlies the restriction of choice of invariant tensor elements. Even the 
formal incorporation of such symmetry restrictions results in a considerable economy in 
the theory of lattice dynamics. 

6.4. Reduced matrix elements and the Derome-Sharp lemma 

We have emphasized the interpretation of the generalized Derome-Sharp lemma 



Diagram technique for basis functions 2015 

(theorem 5 )  as a special relation between a node and its adjoint (0 3). We now mention 
another useful viewpoint. Consider a parity transformation on labels L, and perform 
basis transformation to irrep labels as in 0 5 ,  

... .-. 
- =  * ** 1 *nu- 

" A 

JLV2 *a*; / * , = -  
A i  

- 
I 

A 

where in equation (42) we have used theorem 5 to construct the parity transformation 
on the repetition labels r (equation (25)). On examining equation (42), we note that this 
parity transformation is essentially the reduced matrix element of the original parity 
transformation for labels L. Note the reciprocal appearance of the labels L and r in 
equations (27) and (42). 

This suggests that in general one may identify any reduced matrix element as a new, 
fundamental node in which all legs carry repetition labels. For example, we may 
introduce a condensed notation for the isoscalar factor of 0 5 :  

I 

Again we have two equations with reciprocal appearance in that each of two nodes may 
be expressed in terms of the other. The left sides of equations (43) and (44) suppress the 
information contained on the right-hand side, just as in equation (25) (related to the 
original Derome-Sharp lemma). There is no ambiguity here, as a repetition label r 
when properly defined relates to a unique set of labels (chl). 

6.5. Generalized reduction theorems 

Finally we give explicit forms for the extended JLVn theorems, n = 1, . . . , 4  for nodes 
X of degree n which are left invariant under G. These may be compared with the 
relations in I and in Stedman (1976) for quasi-ambivalent G with real 2-jm symbols. 
The following forms are largely dictated by the requirement of bipartite construction. 
We choose to suppress all repetition labels, apart from product multiplicity, and also all 
basis transformations for X, while exhibiting those for Y, in the following: 

JLVl 
- +  
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7. Conclusions 

From a graph-theoretic viewpoint, our main conclusion is that the diagrams of 
theoretical physics may be standardized as in 0 3 (or with some necessary changes as in 
appendix 2 for example) by a definite parity assignment with respect to group opera- 
tions and parity transformations. Further, the reduction theorems of compact group 
theory then imply the existence of severe restrictions on the possible internal structure 
of such diagrams ( 5 6 ) .  This justifies the approach of this paper (which was really 
dictated by consistency with the work of Jucys et al, cf I) of putting all labels on legs 
wherever possible, and minimizing the internal structure of subdiagrams. 

From a theoretical physics viewpoint, the Derome-Sharp lemma possesses an 
elegance which has not previously been exploited. The principles that go into its proof 
may be applied usefully in very different situations. This gives a standardized formula- 
tion of group-theoretic restrictions on physical tensors. For complicated symmetry- 
related problems (e.g. morphic effects in low symmetries) this promises to be the best 
framework for computations. Some novel results have been discussed by way of 
illustration in § 6; extended computations will be greatly facilitated by the availability of 
tables of coupling coefficients for crystallographic point and space groups. 
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Appendix 1. Glossary of terms 

Leg 
Degree(of subdiagram) The number of legs meeting at the subdiagram 

Node 

Network 

Purify 

Bipartite diagram 

Subdiagram Component of a network 

A line (edge) joining two subdiagrams 

A diagram with minimal internal structure, essentially defined by its leg labels 

A diagram whose internal structure has been made explicit 

A conventional signature associated with a diagram, based on its invariance 
and/or conjugacy properties 

A network in which each leg joins subdiagrams of opposite parity 
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Graph in the sense of Harary (1969): the figure obtained on replacing each sub- 
diagram by a point (with no structure). Hence each network has a unique graph, and 
a bipartite network has a bipartite graph 

A diagram unaffected by joint group operations on all labels in an 
appropriate sense (equation (4)); an invariant or irreducible tensor 

A diagram whose transform under a group operation is given 
by joint group operations on all legs in an appropriate sense (appendix 2) 

A diagram whose adjoint (equation (2)) is equal 
to its parity transform (equation (7), 0 5 )  

Invariant diagram 

Transformable diagram 

Right (left, self-) conjugate diagram 

Fundamental diagram 

Repetition index An invariant scalar label used to classify repetitions in the reduction 

An invariant and self-conjugate diagram 

of general labels to irrep labels 

Appendix 2. Graphical manipulation of tensors in relativity 

This section is illustrative, and shows how the formalism of this paper may be adapted to 
describe a well known theory. Consider the label space L = { x ” }  = {x ,  y ,  z ,  ct} with a 
flat-space metric gap = diag( 1, 1, 1, -1) together with the invariance group G = 
SO(3, 1). 

Two major adaptations of the formalism are required. First, Cartesian, as opposed 
to irreducible, tensors are not invariant under group operations, but rather transform 
among their indices according to standard index operations. We define the group 
operations as follows: {xp}f { x l p } :  

0 

g v -t, - ax 

ax la f f *  P 
This preserves equation (3). A contravariant tensor Tis  then right transformable; i.e., 
under a group operation T-. T‘ where 

r 
A covariant tensor is left transformable, i.e.: 

n A 

The definitions of right and left invariance in 0 3 are special cases of these definitions, 
for T =  T. 
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The second major change is that we no longer have square matrices. We must define 
the adjoint of a subgraph by the condition for self-conjugacy: 

and similarly (following equation (7b)) for left conjugacy. The parity transformation, 
which converts left conjugate diagrams to right conjugate diagrams, must therefore be 
identified as the contravariant metric (rap =gap)  in equation (5 ) .  Thus right transform- 
able, right conjugate diagrams correspond to contrauan'ant tensors and are analogous to 
the fundamental (positive parity) diagrams of § 3. 

Since the metric gap is right transformable and invertible, the definition of equation 
(A.4) is consistent with the old definition of adjoint in equation (l), and corresponds to 
the covariant metric; equation (6) reads gapgp, = a",. Therefore the adjoint of (the 
components of) a contravariant tensor is just the corresponding covariant tensor 
(components). All the standard formulation of relativity can then be carried over into 
graphical notation on this basis, the requirement that a covariant index be summed with 
a contravariant index being the analogue of our restriction to bipartite networks. 

The extent to which the JLVn theorems are applicable for non-compact groups is 
unknown at present. Therefore the similarity between the diagram rules for the 
Levi-Civita tensor density Easy given by Penrose (1971) and JLVn theorems (which was 
mentioned in § 2), must be ascribed to the invariance of E , ~ ,  under the compact group 
SO(3). 

The above formalism ignores the possibility of mixed tensors. Once these are 
allowed, each leg-node junction (rather than each node) is invested with a parity 
(Penrose 1971 distinguishes 'arms' and 'legs'); also, graphs need not be bipartite. While 
mixed tensors are standard in tensor calculus, mixing parities at a node are unhelpful in 
our applications, since we think of a transformation matrix, or its reciprocal, as a single 
entity (cf § 3.1). 
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